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One-Dimensional Boltzmann Equation with a 
Three-Body Collision Term 
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It is shown that a linearized one-dimensional Boltzmann equation with a certain 
simple three-body collision term is trivially soluable. 
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1. I N T R O D U C T I O N  

In this short note we present the solution to a one-dimensional linearized 
Boltzmann equation with a three-body collision term. A simple form of the 
collision term is assumed and the solution is quite trivial. 

This note should serve some pedagogical purpose. The textbook exam- 
ple of a soluable Bol tzmann equation has been the quasi-Maxwell  
model.(1,2) The one-dimensional model here is much simpler. 

The simplicity of our model equation should allow the testing of many  
ideas in nonequilibrium statistical mechanics. Thus, this note should also 
serve some useful purpose for research. 

It  is surprising that there has not been extensive work on the kinetic 
theory of one-dimensional gas. An obvious reason might be that two-body 
collisions in one dimension are like no collisions at all (assuming equal 
mass for all particles). Thus, the one-dimensional gas looks uninteresting 
unless internal states of the particles are introduced or multiparticle colli- 
sions are considered. This note shows that three-body collisions do not 
necessarily make the problem complicated. According to our experience, 
internal states of the particles would make the problem intractable. We do 
emphasize that we have not derived the three-body collision terms from an 
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interparticle potential energy. We have simply assumed a simple form of 
the collision terms. We have not figured out what potentials would produce 
such collision terms. 

Another reason for the unpopularity of one-dimensional gas might be 
the lack of empirical realizations. However, recently there has been interest 
in plasmas in a very strong magnetic field. The motion of electrons along a 
field line can be approximately studied as a one-dimensional system. (3) 
Such systems will undoubtedly make the study of one-dimensional models 
more attractive in the future. 

In this note we simply write down the Boltzmann equation, define the 
collision operator and give its eigenvalues and eigenvectors. Then we give 
one trivial application. There are many short applications such as the study 
of sound waves which the reader can easily analyze for pedagogical 
purposes. 

2. THE BOLTZMANN EQUATION 

2 , 1  �9 The Collision Term 

Consider a one-dimensional gas of identical particles of unit mass. We 
begin with the Boltzmann equation 

a-/+p 7x 

( ~ )c= f dp' dp" dqdq' dq" R(p, p', p",q,q',q ") 

• [-f(P)f(P')f(P") + f(q)f(q')f(q')l (2.2) 

R(p, p', p',q,q',q") = a6(p + p' + p" - q -  q ' -  q") 
X 6 [ � 8 9 1 8 9  (2.3) 

In these equations, f is the one-particle distribution function. It is a 
function of position x, momentum p, and time t. In (2.1), F is the external 
force on a particle. In (2.2), all f have the same x and t. (2.2) is the 
three-body collision term. R is the rate of collisions p + p '  + p"  ~ q + q' + 
q". As (2.3) shows, a collision must satisfy momentum and energy conser- 
vation. Now we make the simplifying assumption that a is a constant 
independent of p, p', p ' ,  q, q', and q". The constant a has the dimension of 
1/(density)Z(time), i.e., a rate per density squared. 

The assumption that a is a constant is crucial for the simplicity of the 
analysis below. As was mentioned above, we have not linked such a 
collision rate to any interaction energy. If the collision rate is derivable 
from quantum mechanics, then a is proportional to the T-matrix element 
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squared. Constant a means that intermediate-state energies are all much 
higher than the kinetic energies involved. It is certainly conceivable that 
there are other interactions which would satisfy the constant-a requirement 
approximately for energies of the order of the temperature. 

2.2. Center-of-Mass Variables 

Let P, E be the total three-body momentum and energy, respectively, 

P = p  + p '  + p "  (2.4) 

2E = ]7 2 --I-/9,2 .jr_ 10.2 (2.5) 

Now imagine a fictitious three-dimensional space of vectors p = (p, p', p"). 
In this space, (2.4) defines a plane and (2.5) defines a spherical surface. 
This surface and the plane have an intersection, which is a circle of radius 

r = [ 2 E -  3(P/3)2]'/Z=(zE - P2/3)1/2 (2.6) 

Note that r2/2 is the energy in the center-of-mass frame, P/f3 is the 
distance from the plane to the origin. 

Let 
Q = q + q ' + q "  
s = l(q2 + q,2 + q,,2 _ �89 Q2) (2.7) 

then the energy momentum conservation demands that q-- (q, q', q") be on 
the same circle defined above by p, i.e., P = Q and r = s. Let q5 be the angle 
measured along the circle. Then we have 

dqdq'dq" R(p, p', p",q,q',q")= d Q-Q- rdrdeoS(P- Q )8( r2 s2 )a 
(5 2 2 

_ O l  d, (2.8) 

The q's can therefore be expressed in terms of ~, P, and r. Draw a line from 
the center of the circle to the intersection of the plane and p axis. Choose 
this line as ~ = 0. Then, a little algebra gives 

q = ~- + r cos 

q' P r @ cos q~ - r---I sin q~ (2.9) 
= 3 - -  ~/6 ~-  

q , , = P _ r 4 c o s f f + r _ _ ~ _ l  sinq~ 
3 ~/6 ~/2 

We have set Q =  P, s =  r. 
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2.3. Collision Rate 

The collision rate can be defined as 

v= f dp'dp"dqdq'dq" f(p')f(p")R(p,p' ,p",q,q' ,q") (2.10) 

In view of (2.8), we have 

2rr 
V = a n  2 (2.1 1) 

n = fdp  f(p) (2.12) 

n is the particle density. 
Note that v is independent of p, i.e., the rate is independent of velocity 

of the particle, but only on the density n. It sets a temperature independent 
time scale at a fixed n. 

3. THE COLLISION OPERATOR 

3.1. The Linearized Equation 

Write 

fo(P) = n ( 2 ~ T ) - 1 / 2 e - / / 2 r  
(3.1) 

f(x, p, t) = fo(P) [ 1 + cp (x, p, t) ] 
in the Boltzmann equation (2.1) and (2.2), and keep only first-order terms 
in cp, we obtain the linearized equation 

0-7 + p  7 x  + F Op K~p (3.2) 

where K is the collision operator defined by 

Kcp = f dp' dp" dqdq' dq" fo(p')fo(p")R 

• [ ~ ( p )  + cp(p') + qg(p") - q~(q) - q~(q') - ~ (q" ) i  (3.3) 

All the ~'s in (3.3) have the same (x, t). Note that 

fo(P) fo(P') fo(P") = fo( q) fo( q') fo( q") (3.4) 

under the energy conservation condition demanded by R. By the symmetry 
between p'  and p" and that among q, q', and q", (3.3) is simplified to 

p ! l 

- 3(alp'alp" dqdq'dq" fo(p')fo(p")R (q) (3.5) 
,J 
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where some of the integrals are done by (2.8). We now proceed to obtain 
the eigenvalues and eigenvectors of K. 

3.2. Spectrum of the Collision Operator 

We define the linear vector space as functions of / )  with the scalar 
product (flop) given by the average of g,(p)ep(p) over the Maxwell distribu- 
tion fo(P). To save writing, let us set the temperature T and density n to 
unity, so that 

ap (q,~> = ( (2q7)1/2 e-e'/2~(p)~p(p) (3.6) 
J 

We choose a set of orthonormal functions % as a basis for the space: 

r = (2nn!)- ' /2Hn(p/ , [2 ) (3.7) 

(~m~.> = 8m. (3.8) 

H, is the Hermite polynomial. We now proceed to show that these basis 
functions turn out to be the eigenvectors of K. 

To calculate the matrix elements of K over the basis (3.7), it is 
convenient to define the generating function 

g(X, e)= E ~.(p) 
(ia)____~" 

,=0 (n ! )  1/2 

= e O'p+x2/2 (3.9) 

The last equality is a consequence of the identity (4~ 
oo 

z" = e2XZ-Z 2 (3.10) ~,, H , ( x )  ~. 
n = 0  

The quantity (g(a')/<g(a)) is easily calculated, and matrix elements can be 
obtained by expanding in powers of )~ and ~'. (Kmn is the coefficient of 
-a~a'~/(n! m!) 1/2 of < g(a')/<g(a)>.) From (3.5), we obtain 

(g(~.')Kg(~,)) = v [ (g(~.')g(~,)) + 2( g (>, '))(g(a)) ] 

- 3 ( @  @'@,' @ dq' aq" fo(p)fo(p ') fo(p")  
d 

Note that 

x Rg(X', p) g(~,, q) (3.1 l) 

( g ( ) ~ ) )  = ( e i X p ) e  x2/2 = 1 

(g()~')g()~)) = e xx" 
(3.12) 
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Only the last integral of (3.11) is nontrivial. This integral can be evaluated 
with the help of the P, r, 4, variables in t roduced in Section 2. We note that 

fo(P)fo(P')fo(P") -- (2w)-3/2exp [ - �89 (r  2 -t- P 2//3)] 

O/ dp dp' dp" aq dq' dq" R = - ~  dtp d4, P-P- r 

(3.13) 
p = ~ + r c o s ~  

q = -j- + rcos4,  

We need the help of one more identity, (5). 

fo ~176176 at)J~ ~t)exp(  - y2t2) t dt 

1 -2exp[  - ~ -2 = ~ y  - �88 2 + fi2)JI0(~a/3y ) (3.14) 

Jo, Io are Bessel functions. The ~, 4' integrals give Jo's and the r integral 
gives I 0. The P integral is trivial. We finally obtain 

(g(X')Kg(h)) = v[e-XX' + 2 - 3 e x p ( -  1 X X ' ) I 0 ( ~ ' ) ]  (3.15) 

2 2m 1 
m=0 (m!)2 

Since this is a function of ~ ' ,  all terms have equal power in h and X', i.e., 
@,,K%) must be diagonal: 

<~nK~m> = "[nt~nm (3.16) 

{ [  dn ] ) x=O , n = 1,2,3 . . . .  ( 3 . 1 7 )  3,,= v 1 - 3  ~x~e(l/3)Xlo(- ~x) 

7n are the eigenvalues of K. 
One easily verifies that "r = Yl = "h = 0. This is a consequence of the 

conservation of particle number,  momentum,  and energy. 3'n increases with 
n and approaches v as n ~ oo. The lowest two nonzero eigenvalues are 

y3~---4p 
~/4 ~-~ 7p (3.18) 

For  very large n, one obtains 
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The first few eigenvectors  are 

% =  1 

q01 ~ 'p  
(3.20) 

= 1 

1 �9 3 = e ( / -  3) 

Each p should be replaced by Plait if factors of  T are explicitly writ- 
ten out. 

4. HEAT CONDUCTION 

As an example of applying the above results, let us study the heat 
conduction. Let us assume a steady state situation, i.e., f is time indepen- 
dent, and write 

f(x, p) = foi T(x), n(x), p] [1 + q~(x, p) ]  (4.1) 

and assume qo is small, proportional to the gradient of T and n. Here f0 is 
the equilibrium distribution at the local temperature T(x) and local density 
n(x). ~p describes the deviation from local equilibrium. The linearized 
Boltzmann equation becomes 

( ~  ) 0 T  P 0 n  
p In f0 -~x + - Kep (4.2) n 0x 

Since we have assumed that e; is proportional to the gradients, Oep/Ox is 
proportional to the square of the gradients of T and n. Equation (4.2) keeps 
only the first order in the gradients. External forces are excluded. 

The temperature and the density are not independent. Multiplying 
(4.2) by Pfo and integrating over p, one obtains 

n ~xOT + TOnox = 0 (4.3) 

which simply says that the pressure nT must be uniform. Consequently, 
(4.2) becomes 

0T 1 Ox p(p2 _ 3T)  - -  = - Kcp (4.4) 
2T 2 

Since p(p2_ 3T)=~/6  T3/2% [see Eq. (3.20)] K can be replaced by 73 
= 4 v, then 

9 p(p2 3T)  0T (4.5) 
ep = 8 p T  2 - ~ x  
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This is the fractional deviation of f f rom local equilibrium. This deviation 
produces no mass current, but  it produces an energy current 

J = n ( ~ p 2 / 2  • p )  

27 ~T = - n ~  ~ T  (4.6) 
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